A Proof of the Weak (1,1) Inequality for Singular Integrals with Non Doubling Measures Based on a Calderón-zygmund Decomposition

نویسنده

  • XAVIER TOLSA
چکیده

Abstract. Given a doubling measure μ on R, it is a classical result of harmonic analysis that Calderón-Zygmund operators which are bounded in L(μ) are also of weak type (1, 1). Recently it has been shown that the same result holds if one substitutes the doubling condition on μ by a mild growth condition on μ. In this paper another proof of this result is given. The proof is very close in spirit to the classical argument for doubling measures and it is based on a new Calderón-Zygmund decomposition adapted to the non doubling situation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PROOF OF THE LOCAL Tb THEOREM FOR STANDARD CALDERÓN-ZYGMUND OPERATORS

We omit the proof. The following theorem is an extension of a local Tb Theorem for singular integrals introduced by M. Christ [Ch] in connection with the theory of analytic capacity. See also [NTV], where a non-doubling versions of Christ’s local Tb Theorem is given. A 1-dimensional version of the present result, valid for “perfect dyadic” Calder ón-Zygmund kernels, appears in [AHMTT]. In the s...

متن کامل

Pseudo-localization of Singular Integrals and Noncommutative Calderón-zygmund Theory

After the pioneer work of Calderón and Zygmund in the 50’s, the systematic study of singular integrals has become a corner stone in harmonic analysis with deep implications in mathematical physics, partial differential equations and other mathematical disciplines. Subsequent generalizations of Calderón-Zygmund theory have essentially pursued two lines. We may either consider more general domain...

متن کامل

Singular Integrals and Approximate Identities on Spaces of Homogeneous Type1 by Hugo Aimar

In this paper we give conditions for the L2-boundedness of singular integrals and the weak type (1,1) of approximate identities on spaces of homogeneous type. Our main tools are Cotlar's lemma and an extension of a theorem of Z6. Introduction. The behavior of singular integrals and approximate identities as operators on the space of integrable functions, i.e. the weak type (1,1), can be investi...

متن کامل

On Multilinear Singular Integrals of Calderón-zygmund Type

A variety of results regarding multilinear Calderón-Zygmund singular integral operators is systematically presented. Several tools and techniques for the study of such operators are discussed. These include new multilinear endpoint weak type estimates, multilinear interpolation, appropriate discrete decompositions, a multilinear version of Schur’s test, and a multilinear version of the T1 Theor...

متن کامل

Weighted Norm Inequalities for Calderón-zygmund Operators without Doubling Conditions

Abstract Let μ be a Borel measure on R which may be non doubling. The only condition that μ must satisfy is μ(B(x, r)) ≤ Cr for all x ∈ R, r > 0 and for some fixed n with 0 < n ≤ d. In this paper we introduce a maximal operator N , which coincides with the maximal Hardy-Littlewood operator if μ(B(x, r)) ≈ r for x ∈ supp(μ), and we show that all n-dimensional Calderón-Zygmund operators are bound...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000